361. Molecular Polarisability. The Specific Kerr Constants and Polarisations of Vinyl Acetate and Various Polyvinyl Acetates dissolved in Carbon Tetrachloride or Benzene.

By (Mrs.) C. G. Le Fèvre, R. J. W. Le Fèvre, and (Miss) G. M. Parkins.

Dipole moments, molar Kerr constants, and other measurements are reported for vinyl acetate and three polyvinyl acetates in benzene or carbon tetrachloride. It is concluded that the mean conformation of the monomer is non-planar with the long axes of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ bonds lying in mutually perpendicular planes. The polymers behave as near-isotropic solutes, probably as easily deformable macromolecular balls.
A survey of the applicability of polarisation and polarisability measurements to the stereochemistry of macromolecular solutes, begun recently for styrene and certain polystyrenes, is here continued for vinyl acetate and three polyvinyl acetates.

Experimental

Solutes.-Vinyl acetate (from the Polymer Corporation, Sydney) was redistilled (b. p. $73^{\circ} / 760 \mathrm{~mm}$.) immediately before solutions were made up. Specimens of its polymers, presented by Monsanto Chemicals (Australia), Ltd., were used without further purification; only Gelva's $1.5,2.5$, and 7 were sufficiently soluble in carbon tetrachloride or benzene for our purposes. The " viscosity" (weight average) molecular weights (in benzene) of these samples were $10,000,18,000$, and 45,000 respectively.

Apparatus and Methods.-These have been described previously (see refs. 1-5, cited by

[^0]Le Fèvre, Le Fèvre, and Parkins; ${ }^{1}$ symbols now used and procedures for the calculation of results are explained in the first of these refs.).

Observations.-Tables 1-4 show, for solutions of weight fractions w_{2}, the differences (ΔB and Δn) between the Kerr constants and refractive indexes of the solutions and their solvents (carbon tetrachloride or benzene), together with dielectric constants (ε) and densities (d). Appropriate values for the pure solvents are given at the feet of the Tables. All measurements relate to 25°. Specific polarisations and specific Kerr constants at infinite dilution, ∞p_{2} and $\infty_{\infty}\left({ }_{8} K_{2}\right)$ respectively, computed from data drawn from Tables 1-4, are included in Table 5.

Table 6 deals with the depolarisation factors for light transversely scattered by solutions of vinyl acetate in carbon tetrachloride; here solute concentrations are expressed as molar fractions (cf. Le Fèvre and Rao ${ }^{2}$), and observations were taken at room temperatures.

Table 1. Kerr effects and refractive indexes for solutions in carbon tetrachloride * of vinyl acetate and polyvinyl acetates.

Vinyl acetate						Gelva V. 1-5				
$10^{5} w_{2}$	722	1545	2159	3168	3260	$10^{5} w_{2} \ldots$	192	241	405	542
$10^{7} \Delta B$	0.003	0.007	0.009	0.012	$0 \cdot 013$	$10^{7} \Delta B \ldots$	0.0025	0.0025	0.005_{5}	0.005_{5}
$10^{5} \psi_{2}$	3338	5081	6800			$10^{5} w_{2} \ldots$	1009	1020	2041	
$10^{4} \Delta n$	-42	-60	-80			$10^{4} \Delta n \ldots$	+2	+3	+3	

 whence \(10^{7} \Delta B=0.4767 w_{2}-2.70 w_{2}{ }^{2}\); \(\quad\) whence \(\Sigma 10^{7} \Delta B / \Sigma w_{2}=1 \cdot 16\);
 \(\Sigma \Delta n / \sum w_{2}=-0.119_{6}\)
 \(\Sigma \Delta n / \Sigma w_{2}=0.019_{7}\)
 Gelva V. 1-5

$10^{5} v_{2}$	$\cdots \cdots \cdots \cdots$.	206	299	377	601	791
$10^{2} \Delta B$	$\cdots \cdots \cdots \cdots$.	0.002	0.004	0.005	0.009	0.012
$10^{2} v_{2} v_{2}$	$\cdots \cdots \cdots \cdots$.	662	738	945		
$10^{4} \Delta n$	$\cdots \cdots \cdots \cdots$.	+2	+3	+4		

* For $w_{2}=0, B_{1}=0.070 \times 10^{-7}, n^{25}=1.4575$.

Table 2. Dielectric constants and densities for solutions in carbon tetrachloride * of vinyl acetate and polyvinyl acetates.

Vinyl acetate									
$10^{5} w_{2} \quad \ldots .$.	413	424	812	845		1066	1496	150	
$d_{12} \ldots \ldots \ldots$.		1.5795		1.5746			1.5671		
ε_{12}........	$2 \cdot 2531$	$2 \cdot 2530$	2.2766	$2 \cdot 2781$		$2 \cdot 2921$	$2 \cdot 3159$	2.31	
$10^{5} w_{2} \ldots \ldots$.	1624	2246	2402	3069		3443	4063	536	
$d_{12} \ldots \ldots \ldots$.		$1 \cdot 5586$	1.5565	1-5490		1.5451	1.5381	1.52	
ε_{12}........	$2 \cdot 3251$	$2 \cdot 3594$	2.3719	$2 \cdot 4098$		$2 \cdot 4282$	-		
whence graphically $\beta d_{1}=-1 \cdot 188$ and $\alpha \varepsilon_{1}=6.48$									
Gelva V. 1-5									
$10^{5} w_{2} \quad \ldots \ldots$.	188	191	217	236		306	361	38	
$d_{12} \ldots \ldots \ldots$.	1-5836		1.5834				1-5827	1.58	
ε_{12}........	-	$2 \cdot 2393$	$2 \cdot 2411$	$2 \cdot 2416$		$2 \cdot 2464$	$2 \cdot 2492$	$2 \cdot 25$	
$10^{5} w_{2} \quad \ldots \ldots$.	398	423	632	637		641	854	972	
$d_{12} \ldots \ldots \ldots$.	1.5825	1.5824	1.5813	1.5813		1.5813	1-5802	1.57	
$\varepsilon_{12} \quad \ldots \ldots \ldots$	-	$2 \cdot 2541$	$2 \cdot 2659$	$2 \cdot 2670$		-	-		
whence graphically $\beta d_{1}=-0.494$ and $\alpha \varepsilon_{1}=6.38_{8}$									
Gelva V. 2.5									
$10^{5} w_{2} \quad \ldots .$.	144	$223 \quad 427$	508	705	779	805	818	973	1153
$d_{12} \quad \ldots \ldots \ldots$		$1.5834 \quad 1.5824$	1.5820	1.5810	1.5806	1.5805	1.5804	1.5796	1.5788
$\varepsilon_{12} \quad \ldots \ldots \ldots$.	$2 \cdot 2363$	$2.2409 \quad 2.2541$	2.2593	$2 \cdot 2717$	2.2765	$2 \cdot 2779$	$2 \cdot 2785$	2-2888	2-3004

whence graphically $\beta d_{1}=-0.4908$ and $\alpha \varepsilon_{1}=6.341$

Gelva V. 7								
$10^{5} w_{2} \quad \ldots .$.	127	195	234	309	328	375	508	541
d_{12}	1.5839	1.5836	1.5833	1.5828	1.5829	1.5827	1.5816	1.5815
$\varepsilon_{12} \quad \ldots \ldots .$.	2-2344	$2 \cdot 2391$	$2 \cdot 2392$	$2 \cdot 2466$	-	$2 \cdot 2463$	$2 \cdot 2595$	$2 \cdot 2602$

whence graphically $\beta d_{1}=-0.455$ and $\alpha \varepsilon_{1}=5.65$

$$
\text { * For } w_{2}=0, d_{1}=1 \cdot 5845, \varepsilon_{1}=2 \cdot 2270
$$

Table 3. Kerr effects and refractive indexes for solutions in benzene* of vinyl acetate and polyvinyl acetates.
Vinyl acetate
Gelva V. 2.5

$10^{5} w_{2}$	\ldots	242	2898	3097	4163	6439	8633	$10^{5} w_{2}$	\ldots	800	1172	1278	1534	2147	3545
$10^{7} \Delta B$	\ldots	-	0.010	0.013	0.014	0.028	0.033	$10^{7} \Delta B$	\ldots	-	0.007	0.008	0.012	0.018	-
$10^{4} \Delta n$	\ldots	-3	-33	-35	-47	-73	-77	$10^{4} \Delta n$	\ldots	-2	-3	-3	-4	-7	-11

whence ${ }^{10}{ }^{7} \Delta B=0.379 w_{2}+0.185 w_{2}{ }^{2}$;

$$
\sum \Delta n / \sum w_{2}=-0.113
$$

whence $10^{7} \Delta B=0.422 w_{2}+19 \cdot 3 w_{2}^{2}$;

$$
\sum \Delta n / \sum w_{2}=-0.029
$$

Gelva V. 7

$10^{5} w_{2}$	\ldots	775	1235	1591	1715	2101	2327
$10^{7} \Delta B$	\ldots	0.005	0.008	0.013	0.013	0.018	0.022
$10^{5} w_{2}$	\ldots	1664	1818	1885			
$10^{4} \Delta n$	\ldots	-6	-7	-7			

$\begin{array}{llllllll}10^{5} w_{2} & \ldots & 709 & 1259 & 2230 & 3125 & 3625 & 4191\end{array}$
$10^{7} \Delta B \quad \ldots .0 .003 \quad 0.008 \quad 0.010 \quad 0.017 \quad 0.020 \quad 0.025$
$\begin{array}{lllllll}10^{5} w_{2} & \ldots & 1267 & 1420 & 1708 & 1824 & 2434\end{array}$
$10^{4} \Delta n \ldots-2 \quad-3 \quad-3 \quad-3 \quad-4$
whence $10^{7} \Delta B=0.428 w_{2}+3.7 w_{2}^{2}$;
$\sum \Delta n / \sum w_{2}=-0.017_{3}$
$\sum \Delta n / \sum w_{2}=-0.037$

* For $w_{2}=0, B_{1}=0.410 \times 10^{-7}, n_{D}{ }^{25}=1.4973$.

Table 4. Dielectric constants and densities for solutions in benzene * of vinyl acetate and polyvinyl acetates.

	$V i n y l ~ a c e t a t e ~$					
$10^{5} w_{2}$	940	1160	1210	1400	1522	1687
$d_{12} \ldots$	$0 \cdot 87397$	$0 \cdot 87402$	0.87404	0.87409	0.87406	$0 \cdot 87410$
ε_{12}	$2 \cdot 3075$	$2 \cdot 3157$	$2 \cdot 3172$	2.3242	$2 \cdot 3293$	$2 \cdot 3349$

whence $\sum \Delta d / \sum w_{2}=0.0187 ; \sum \Delta \varepsilon / \sum w_{2}=3.710$

				Gelva V. 1-5	
$10^{5} w_{2}$	975	1235	1660	1883	2237
d_{12}	$0 \cdot 87609$	$0 \cdot 87670$	$0 \cdot 87768$	$0 \cdot 87823$	$0 \cdot 87902$
ε_{12}	$2 \cdot 3077$	$2 \cdot 3166$	$2 \cdot 3329$	$2 \cdot 3400$	$2 \cdot 3525$

whence $\Sigma \Delta d / \Sigma w_{2}=0.2343 ; \Sigma \Delta \varepsilon / \Delta w_{2}=3.594$

Gelva V. $2 \cdot 5$									
$10^{5} w_{2}$	636	800	953	1172	1476	1534	2027	2147	3545
d_{12}	0.87531	$0 \cdot 87568$	$0 \cdot 87609$	0.87656	-	-	0.87857	-	0.88202
ε_{12}	$2 \cdot 2943$	$2 \cdot 2999$	-	2.3136	$2 \cdot 3222$	$2 \cdot 3243$	$2 \cdot 3416$	$2 \cdot 3444$	$2 \cdot 3951$

whence $\Sigma \Delta d / \sum w_{2}=0.2346 ; \sum \Delta \varepsilon / \sum w_{2}=3.415$
Gelva V. 7

$10^{5} w_{2}$	709	1267	1420	1708	1824	2434
$d_{12} \ldots$	0.87547	0.87675	0.87721	0.87790	0.87815	$0 \cdot 87965$
ε_{12}	$2 \cdot 2953$	$2 \cdot 3148$	$2 \cdot 3204$	$2 \cdot 3320$	$2 \cdot 3351$	$2 \cdot 3569$
	whence $\Sigma \Delta d / \Sigma w_{2}=0.2385 ; ~ \Delta \varepsilon=3.246 w_{2}+9.83 w_{2}{ }^{2}$					

Table 5. Specific polarisations and specific Kerr constants of vinyl and polyvinyl acetates at infinite dilution.

Solute	$\left(\alpha \varepsilon_{1}\right)_{w_{2}}=0$	$(\beta)_{w_{2}=0}$	γ	$(\delta)_{w_{2}=0}$	${ }_{\infty} P_{2}$ (c.c.)	${ }_{\infty}\left({ }_{s} K_{2}\right) \times 10^{12}$
Solvent: Carbon tetrachloride						
Monomer	$6 \cdot 48{ }_{0}$	-0.749_{8}	-0.082	6.81	1.007	$0.04{ }_{2}$
Gelva V. 1.5	$6 \cdot 388$	-0.311_{8}	$+0.026$	$16 \cdot 1$	0.917_{2}	$0 \cdot 10{ }_{7}$
Gelva V. 2.5	$6.34{ }_{1}$	-0.309_{8}	$+0.013$	$16 \cdot 6$	$0.911{ }_{8}$	$0 \cdot 11{ }_{1}$
Gelva V. 7	$5 \cdot 650$	-0.287_{2}	-	-	$0 \cdot 834_{5}$	
Solvent: Benzene						
Monomer	3.71 ${ }_{0}$	0.0214	-0.075	0.924	1.031	0.019
Gelva V. 1.5	3.594	$0 \cdot 2681$	-0.025	1.01	0.9254	$0.00{ }_{7}$
Gelva V. 2.5	$3 \cdot 415$	$0 \cdot 2685$	-0.019	1.03	$0.891{ }_{7}$	0.014
Gelva V. 7	3.24 ${ }_{6}$	$0 \cdot 2729$	-0.012	1.04	$0.858{ }_{4}$	$0 \cdot 02{ }_{0}$

Discussion

Apparent Dipole Moments.-These are partly shown in Table 7, in which distortion polarisations have been taken as the R_{2} 's deduced from the refractive indexes and densities given in Tables 1 and 3. For the pure monomer ($n_{\mathrm{D}}{ }^{20} 1 \cdot 3949, d_{4}{ }^{20} 0.9287$) R_{D} is 22.22 c.c.; with ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$ the moment of vinyl acetate would appear as 1.76 D in carbon tetrachloride and as $1 \cdot 7_{9} \mathrm{D}$ in benzene. (Usually solvent effects ${ }^{3}$ cause $\mu_{\mathrm{CCI}_{4}}$ to exceed $\mu_{\text {benzene }}$ slightly, but in the present case the conformation of the solute may not be quite the same in both media.) Sakurada and Lee ${ }^{4}$ have reported the moment in benzene as 1.75 D .

Table 6. Molecular anisotropy of vinyl acetate at
infinite dilution in carbon tetrachloride.

$10^{5} f_{2}$	3212	5993.5	8255	10,827	13,385
$10^{3} \Delta \Delta_{12}$	17.01	31.04	42.75	56.89	$71 \cdot 46$
whence	$+0 \cdot 2$	and, wi	$=0.6$	${ }_{\infty} \delta_{2}{ }^{2}=$	5×10

Table 7. Polarisations and apparent moments.

Mol. wt.		$\begin{aligned} & \text { Monomer } \\ & \mathbf{8 6 \cdot 1} \end{aligned}$	$\begin{aligned} & \text { V. } 1 \cdot 5 \\ & 10,000 \end{aligned}$	$\begin{aligned} & \text { V. } 2.5 \\ & 18,000 \end{aligned}$	$\begin{gathered} \text { V. } 7 \\ 45,000 \end{gathered}$
In carbon tetrachloride					
Specific refraction* (c.c.)		$0 \cdot 2745$	$0 \cdot 234$	$0 \cdot 230$	-
$\infty\left({ }_{0} P_{2}\right)$ (c.c.)		$63 \cdot 1$	6.83×10^{3}	12.3×10^{3}	-
$\mu(\mathrm{D})$		$1 \cdot 7{ }_{8}$	18.3	24.5	-
In benzene					
Specific refraction* (c.c.)		$0 \cdot 285$	$0 \cdot 231$	$0 \cdot 234$	$0 \cdot 237$
$\infty\left({ }_{0} P_{2}\right)$ (c.c.)		$64 \cdot 3$	6.9×10^{3}	11.8×10^{3}	27.9×10^{3}
$\mu(\mathrm{D}) \ldots \ldots \ldots$.		$1 \cdot 77$	$18 \cdot 4$	24.0	36.9

* Computed from the β and γ values in Table 5.

The Japanese authors also examined two polyvinyl acetates, of mol. wt. 24,200 and 60,000 , finding moments of 28.7 and $44 \cdot 4 \mathrm{D}$, respectively. That their results and ours are harmonious is shown by the fact that the four apparent moments from Table 7 and those from Sakurada and Lee form a smooth curve when plotted against $\log M$. The total results can be represented by the equation: $\bar{\mu}=1 \cdot 8-9 \cdot 8 L+8 \cdot 5 L^{2}$ where $L=$ $\log \left(M_{\text {polymer }} / M_{\text {monomer }}\right)$. A comparison of calculated with observed moments is given in Table 8.

Table 8. Moments of polyvinyl acetates calculated as $1 \cdot 8-9 \cdot 8 L+8 \cdot 5 L^{2}$.

Mol. wt. of polymer	10,000	18,000	24,200 *	45,000	60,000 *
$\bar{\mu}$ (calc.)	17.8	$24 \cdot 8$	28.8	38.0	$42 \cdot 6$
$\bar{\mu}$ (obs.)	18.3-18.4	24.0-24.5	28.7*	36.9	44-4*

An a priori approach to the polarities of these polymers may be made following Debye and Bueche ${ }^{5}$ who considered a flexible chain of carbon atoms from alternate members of which a dipole moment μ_{0} acts at angles β and γ respectively to the preceding and succeeding $\mathrm{C}-\mathrm{C}$ bonds. Rotations around valency directions were assumed to be " free" save for restrictions imposed by interatomic distances and angles. With $\beta=70^{\circ}$ and $\gamma=110^{\circ}, \bar{\mu}^{2}=0.92 n \mu_{0}^{2}$, where n is the number of dipoles on the chain. In the present cases the repeating units may each be likened to ethyl acetate and μ_{0} accordingly taken ${ }^{6}$ as 1.8 D ; predicted moments for the polymers listed in Table 8 are then obtained as 18.6 , $25 \cdot 0,28 \cdot 9,39 \cdot 5$, and $45 \cdot 6 \mathrm{D}$. Comparisons with the $\vec{\mu}$'s observed are satisfactory and suggest

[^1]that flexibility of the polyvinyl acetates exceeds that of the polystyrenes ${ }^{1}$ or the poly- p chlorostyrenes, ${ }^{5}$ for both of which series the quantity $\bar{\mu}^{2} / n \mu_{0}{ }^{2}$ has been shown by experiment to be $c a .0 .56$, or for the polyvinyl chlorides, ${ }^{7}$ for which the factor is $c a .0 .75$.

Anistropy of the Polyvinyl Acetates.-From the ${ }_{\infty}\left({ }_{s} K_{2}\right)$'s in Table 5 a small increase in anisotropy with molecular weight may be inferred; however, calculations indicate this effect to be extremely slight in terms of molecular semi-axes. Assuming that $b_{1}>b_{2}=b_{3}$, the differences, $10^{23}\left(b_{1}-b_{2}\right)$, would only need to be $c a .0 .002,0.004$, and 0.006 for Gelva's $1.5,2 \cdot 5$, and 7 respectively to yield specific Kerr constants of the order found. Since total polarisabilities appear from the observed refractions to be 275,501 , and 1268×10^{-23} c.c., it is clear that these polyvinyl acetates behave in benzene or carbon tetrachloride as near-isotropic solutes.

Present results can be understood if the dissolved species adopt roughly globular forms having easy deformabilities. For a macromolecular ball, isotropy is to be expected; as M is increased, solvent impacts and solute-solvent forces should become more effective and make the mean conformation less isotropic; the imposition of external distorting influences should be detectable. The first two of these predictions are in accord with the data of Table 5, the third with observations by Hartmann and Jaenicke ${ }^{8}$ (who found the dielectric constants of polyvinyl acetate solutions under streaming conditions to rise from the values at rest, and in a way which was strongly dependent on the flow gradient).

Conformation of Vinyl Acetate Monomer.-The molar Kerr constant of vinyl acetate is small $\left(3 \cdot 6_{1} \times 10^{-12}\right.$ in carbon tetrachloride; slightly less in benzene; cf. Table 5). The larger value, together with $\delta_{\infty}{ }^{2}=0.0255$ (Table 6), ${ }_{\mathrm{E}} P=20.78$ c.c. [calc. by totalling semi-axes of constituent bonds (cf. Table 9), this ${ }_{\mathrm{E}} P$ is $0.935 R_{\mathrm{D}}$, which is reasonable], and $\mu_{\text {resultant }}=1.76 \mathrm{D}$ (Table 7) yields:

$$
10^{23} b_{1}=0.823,10^{23} b_{2}=0.985,10^{23} b_{3}=0.663
$$

(provided that $\mu_{\text {resultant }}$ acts along the b_{1} direction). The problem is now to reconcile such data with others computed a priori from the longitudinal, transverse, and " vertical " polarisabilities of the various bonds occurring in vinyl acetate. These are listed, together with certain geometrical details, in Table 9.

Table 9. Anisotropic polarisabilities of bonds,* and intervalency angles used in calculations.

	C-H	C-O	$\mathrm{C}=0$	C-C	$\mathrm{C}=\mathrm{C}$
$10^{23} b_{\text {L }}$	$0 \cdot 064$	0.081	0.230	0.099	$0 \cdot 280$
$10^{23} b_{T}$,	0.039	$0 \cdot 140$	0.027	0.073
$10^{23} b_{v}$		0.039	$0 \cdot 046$	0.027	0.077
Source	Ref. 9	Ref. 10	Ref. 11	Ref. 10	Ref. 12

Inspection of models shows, of course, that a large number of conformations are possible between certain extremes, six of which are indicated by (I) to (IV) and Figs. A and B.

[^2]None of the planar forms gives predictions of molecular semi-axes of ${ }_{m} K$'s which correspond to those from experiment (see Table 10). The molar Kerr constants calculated for them are all too large.

(III)

(IV)

Fig. A has $\mathrm{C}=\mathrm{C}$ bond as full lines, Fig. B as broken lines; in both Figs. planes $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are orthogonal, the $\mathrm{C}=\mathrm{O}$ axis is normal to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ which contains the $\mathrm{O} \cdot \mathrm{CH}: \mathrm{CH}_{2}$ triangles, and b_{1} is taken parallel to $b_{\mathrm{L}} \mathrm{C}=0$.

To produce a b_{1} of the order of that found the longitudinal polarisabilities of $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ need to be more at 90° to one another than they are in types (I)-(IV). Nonplanar forms are therefore indicated, and of those tried the form A offers most promise. This is generated from (I) by twisting the $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}$ triangle about the acetyl-oxygen

Table 10. Semi-axes and molar Kerr constants expected for models (I) to (IV) and A and B.

Structure	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$	$10_{\mathrm{m}}{ }^{12} \mathrm{~K}$ (calc.)	Structure	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$	$10^{12}{ }_{\mathrm{m}} K$ (calc.)
I	0.870	0.987	0.612	$29 \cdot 9$	IV	0.890_{5}	0.967	0.612	4.8
II	1.038	0.819	0.612	118	A	0.823	1.004	0.642	4.9
III	0.947_{5}	0.926	0.612	$68 \cdot 1$	B	0.823	0.851	0.795	0.1

bond, and the $\mathrm{CH}_{2}=\mathrm{CH}$ group about the vinyl-oxygen bond, until the $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}$ unit lies in a plane perpendicular to that containing the $\mathrm{O} \cdot \mathrm{CO} \cdot \mathrm{Me}$ fragment, and normal to the $\mathrm{C}=\mathrm{O}$ long axis. Conformations A or B differ in that the olefinic linkage is disposed either trans or cis to a line at 34° to the $\mathrm{Ac}-\mathrm{O}$ bond (see diagram); in both the vinyl-oxygen bond is at $c a .28^{\circ}$ to the direction of $b_{\nabla} \mathrm{O}=0$.

Table 10 shows that A or B leads to a calc. b_{1} identical with that from experiment, but consideration of the b_{2} 's and b_{3} 's strongly favours form A, which we accordingly propose as the effective conformation of vinyl acetate under our conditions.

The authors thank the Polymer Corporation Pty. Ltd. and Monsanto Chemicals (Australia) Ltd.

[^0]: ${ }^{1}$ Le Fèvre, Le Fèvre, and Parkins, J., 1958, 1468.
 ${ }^{2}$ Le Fèvre and Rao, J., 1957, 3644; 1958, 1465.
 ${ }^{3}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953, Chap. 3.
 ${ }^{4}$ Sakurada and Lee, Z. phys. Chem., 1939, B, 43, 245.
 ${ }^{5}$ Debye and Bueche, J. Chem. Phys., 1951, 19, 589.

[^1]: ${ }^{6}$ Wesson, " Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.

[^2]: ${ }^{7}$ Fuoss, J. Amer. Chem. Soc., 1941, 63, 2410.
 ${ }^{8}$ Hartmann and Jaenicke, Z. phys. Chem., 1956, 6, 220.
 ${ }^{9}$ Le Fèvre and Le Fèvre, Revs. Pure Appl. Chem., 1955, 5, 261.
 ${ }^{10}$ Le Fèvre and Le Fèvre, $J ., 1956,3549$.
 ${ }_{11}$ Le Fèvre, Le Fèvre, and Rao, J., 1959, 2340.
 ${ }_{12}$ Bramley, Le Fèvre, Le Fèvre, and Rao, J., 1959, 1183.
 13 Allen and Sutton, Acta Cryst., 1950, 3, 46.

